Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The ecological and evolutionary success of multicellular lineages stems substantially from their increased size relative to unicellular ancestors. However, large size poses biophysical challenges, especially regarding nutrient transport: These constraints are typically overcome through multicellular innovations. Here, we show that an emergent biophysical mechanism—spontaneous fluid flows arising from metabolically generated density gradients—can alleviate constraints on nutrient transport, enabling exponential growth in nascent multicellular clusters of yeast lacking any multicellular adaptations for nutrient transport or fluid flow. Beyond a threshold size, the metabolic activity of experimentally evolved snowflake yeast clusters drives large-scale fluid flows that transport nutrients throughout the cluster at speeds comparable to those generated by ciliary actuation in extant multicellular organisms. These flows support exponential growth at macroscopic sizes that theory predicts should be diffusion limited. This demonstrates how simple physical mechanisms can act as a “biophysical scaffold” to support the evolution of multicellularity by opening up phenotypic possibilities before genetically encoded innovations.more » « lessFree, publicly-accessible full text available June 20, 2026
-
The ecological and evolutionary success of multicellular lineages is due in no small part to their increased size relative to unicellular ancestors. However, large size also poses biophysical challenges, especially regarding the transport of nutrients to all cells; these constraints are typically overcome through multicellular innovations (e.g., a circulatory system). Here we show that an emergent biophysical mechanism — spontaneous fluid flows arising from metabolically-generated density gradients — can alleviate constraints on nutrient transport, enabling exponential growth in nascent multicellular clusters of yeast lacking any multicellular adaptations for nutrient transport or fluid flow. Surprisingly, beyond a threshold size, the metabolic activity of experimentally-evolved snowflake yeast clusters drives large-scale fluid flows that transport nutrients throughout the cluster at speeds comparable to those generated by the cilia of extant multicellular organisms. These flows support exponential growth at macroscopic sizes that theory predicts should be diffusion limited. This work demonstrates how simple physical mechanisms can act as a ‘biophysical scaffold’ to support the evolution of multicellularity by opening up phenotypic possibilities prior to genetically-encoded innovations. More broadly, our findings highlight how cooption of conserved physical processes is a crucial but underappreciated facet of evolutionary innovation across scales.more » « less
-
Cells are the basic units of all living matter which harness the flow of energy to drive the processes of life. While the biochemical networks involved in energy transduction are well-characterized, the energetic costs and constraints for specific cellular processes remain largely unknown. In particular, what are the energy budgets of cells? What are the constraints and limits energy flows impose on cellular processes? Do cells operate near these limits, and if so how do energetic constraints impact cellular functions? Physics has provided many tools to study nonequilibrium systems and to define physical limits, but applying these tools to cell biology remains a challenge. Physical bioenergetics, which resides at the interface of nonequilibrium physics, energy metabolism, and cell biology, seeks to understand how much energy cells are using, how they partition this energy between different cellular processes, and the associated energetic constraints. Here we review recent advances and discuss open questions and challenges in physical bioenergetics.more » « less
An official website of the United States government
